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i s  

3~(h) = exp ( - h )  exp ( - a  2) 

oo 

× E e,,,(-1)mIm(t~2h)I2,,,(2t~h'/2) • 
m = O  

These series converge rapidly because a has such a 
small magnitude. 

The results of some numerical computations are 
shown in Fig. 2. The solid curve corresponds to the 
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Fig. 2. Probability density function of the normalized scattered 
intensity, equation (4.19), for a = 0 (solid curve), a = 0.3 (broken 
curve) .  

negative exponential PDF 

J~(h) = exp ( - h )  (4.20) 

which would arise when a = 0. Even for the unrealisti- 
cally large value of a = 0"3 (dotted curve), the PDF 
is only a minor perturbation of the negative 
exponential. 

This suggests that we seek a simpler version of 
fh(h) consistent with the fact that a is small. To this 
end we employ the usual power-series expansion of 
the modified Bessel functions. We can easily show 
that 

j ~ ( h ) - ~ ( l + a 2 )  -1 exp(-h)(l+a2h) (4.21) 

is an excellent approximation to (4.19) when a is 
very small. In fact, if a = 0.2, then (4.21) differs from 
(4.19) by less than 0.1%. This result is not surprising; 
after all, when/3 is small, then ( U ) =  0 in relation to 
(U2). The probability density function of the sum of 
the squares of two Gaussian distributed random vari- 
ables, where first moments vanish and second 
moments are equal, is known to have a negative 
exponential probability density function. 
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Abstract 

The diffraction intensity from small crystallites with 
lattice vibrations is expressed by a sum over direct- 
lattice points as previously described, using atomic 
scattering factors modified by the anisotropic vibra- 
tion tensor /3 specified by the lattice vibration, the 

thermal diffuse scattering not being taken into 
account. Since the temperature factor for the atomic 
pair of the a th  and /3 th  atoms is/3~ +/38, the factor 
is proved to have the same rotation symmetry as the 
Laue symmetry corresponding to the atomic distance 
vector of the pair, r ~  = r e - r  e. Consequently the 
intensity profile for the crystallites with lattice 
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50 SMALL CRYSTALLITES WITH ANISOTROPIC TEMPERATURE FACTOR 

vibrations can be systematically and effectively calcu- 
lated similarly to the crystallites without vibrations 
by virtue of the Laue symmetry, while an 
orientational average over the scattering vector b of 
exp [-b(/3,~ +/3~)b+ 2rrib. r,~] is required instead of 
exp (27rib. r,~o). The double integral for the average 
can be expanded asymptotically with respect to r,~o 
to the third term by Fourier integral theory. It is 
concluded that (1) the first term corresponds to the 
formula derived by James [Phys. Z. (1932). 33, 737- 
754] and gives the correct value only if the vibration 
tensor is isotropic; (2) the second and third terms are 
required to correct for the anisotropy of the tensor. 

1. Introduction 

The diffraction intensity from a small crystal without 
lattice vibrations is given by Ino & Minami (1979) 
by the use of the ' random shift treatment' as follows: 

I (b) = (1/Vc) ~ ~ ~--'. f .  (b)ft3 (b) V(m+ r .  - r~) 
m a 

xexp  [2~-ib. ( m + r .  - r~ ) ] ,  (1) 

where b is the scattering vector, m is the position 
vector of the Bravais-lattice point, and f,~ and r,~ are 
the atomic scattering factor and the position vector 
of the a th  atom in the unit cell of the crystal respec- 
tively. In the above equation Vc is the unit-cell volume 
and V(r) denotes the self-convolution of the shape 
function s(r) for the crystal, that is 

V(r) = ~ s ( r ' ) s ( r '+  r) dr', (2) 

s ( r ) = / l a  inside the crystal boundary 
outside the crystal boundary. (3) 

A real crystal has an anisotropic thermal vibration 
specified by a vibration tensor /3, which is usually 
determined by the least-squares method in crystal 
structure analysis. In this paper the diffraction profile 
from small crystallites with anisotropic thermal vibra- 
tion will be discussed and it will be shown that the 
profile can be expressed by an asymptotic expansion 
with respect to Ira+ r . -  r,I and the formula of the 
intensity profile can be systematically and efficiently 
computed using the Lane-symmetry of the crystal. 

2. Formula of intensity profile from crystailites 
with lattice vibrations 

(i) Atomic scattering factor modified by lattice 
vibrations 

The effect of anisotropic thermal vibrations on the 
atomic scattering factor has been studied (Cochran, 
1954) and it has been shown that the dynamic scatter- 
ing factor f (b )  is given by 

f (b )  = f (b )  exp (-i')/3b), (4) 

where f (b)  is the atomic scattering factor of the atom 

at rest and /3/2"tr 2 is the covariance matrix of the 
thermal displacement. In ordinary crystal structure 
analysis, the thermal diffuse scattering being neglec- 
ted, the following structure factor is used (Jeffery, 
1971): 

t/c 

F(h) = ~ f,~(h) exp (-h/3,,h) exp (2rrih. r,~), (5) 
ot 

where /3~ is called the vibration tensor of the a th  
atom and ~ c  means the sum over atoms in the unit 
cell. 

(ii) Formula for the intensity profile 

The diffraction intensity from a small crystal with 
lattice vibrations can be expressed by replacing f (b)  
with f (b)  in (1) except for m+r,~ - r ,  = 0, as follows: 

Vt ,--, 2 1 b l(b)=-~-~.. , f~(b)+--~_~-'~_,f~( )f~ (b) 
• c o t  v c  nl a 

( m + r a - r B  ~ 0 )  

x exp [ -  b(/3~ +/3~)b] V(m+ r~ - r , )  

× exp [27rib. (m+r~ - rt3)], (6) 

where V, is the total volume of the crystal. If a 
polycrystalline sample consists of small crystals hav- 
ing shape function s(r) and oriented at random, the 
intensity from the sample is given as an average of 
(6) over the directions of the scattering vector b. As 
the atomic scattering factors can be regarded as being 
spherically symmetric, the intensity from the poly- 
crystal is given by 

V, 1 
= -~z~-~ - ~ - ' ~ - ' . f . ( b ) f ~ ( b )  I(b) .~ f=.(b)+,,¢ ,. ,~ 

( m + r a + r  ~ ~ 0 )  

x V(m + r,, - r~)(exp [-b(/3,~ +/3")b] 

x exp [27rib. (m+ r~ - rt3)])a b, (7) 

where ( )ab means an average over the orientations 
of b. If all the atoms in the lattice are at rest, that is 
/3, = 0  (a = 1 , . . .  ), then (..-)ab =jo(2~rblm+r.-ral) 
and (7) gives the same results obtained in the previous 
paper (Ino & Minami, 1979). In a similar way to the 
case without lattice vibrations, the summation pro- 
cedure over m, a, /3 will be simplified by virtue of 
the crystal symmetry. 

(iii) Simplification of summation over (m, a,/3) 

Suppose the crystal possesses the symmetry of a 
space group G and a Laue group R. Then the set of 
positions occupied by atoms such as m+r,~ can be 
classified into subsets/)1, P 2 , . . . ,  P, and the Pi set is 
expressed as 

P i = { m + r ~ ' ) l , m ~ O , t = l , . . . , N i } ,  (8) 

with 

r~t)=~')ri+t, ( t = l , . . . , N i )  (9) 
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where m ~/2 means that m belongs to the whole direct 
space/2, r~ is a representative positional vector of the 
set P~ and ~ t )  and t, are the rotational and transla- 
tional operators of the tth element in G respectively. 
Let/3~ be the vibration tensor for the representative 
atom at r = r~, then/3~'), the vibration tensor for the 
atom located at r = r~ t) is given by 

/3~') = ~ ' ) / 3 , ~ ' ) .  (10) 

All distance vectors joining the points in the set Pj 
to those in the set P~ can be classified into vector sets 
De1, De2,... such that all the elements in each vector 
set are equivalent with respect to the symmetry of the 
Laue group R and 

Dok={m+r~lm~12, s=l , . . . ,nok},  (11) 

where ..(s) "Ok and nOk are the equivalent distance vectors 
and their number in a unit cell, respectively. The Disk 
set can be generated by the operator of R from a 
particular atomic distance vector m + r , ~  which is 
located inside a sectorial subspace 120 shown in Table 
1 of a previous paper (Minami & Ino, 1979): 

Dijk = {Rv(m+ "(~)x = .o~,lR,~a.p 1 ,2 , . . . ,L} ,  (12) 

with m+r~]k ~ e 12o. Let r~ ~) and r) °) denote position 
vectors of the pair of atoms corresponding to the 

-t- ,,(s). distance vector re--,Ok. 

r(S)=r~U) _(o) .(s) ijk -- l j  , m+ aOk ~ 120. (13) 

Hence the superscripts (u) and (v) are to be deter- 
mined by subscript /jk and m under the condition: 

.(s) m+,ek  e 12o- ThUS the summation over m, a and /3 
in (7) can be rearranged to one over the Dog vector 
sets and then m + r~ - ra and/3~ +/3a are transformed 
into R v ( m + r ~  ) and Rv[/3~)+/3~]/~v respectively, 
where/3~") and/3~°) are tensors for atoms correspond- 
ing to r~ ") and r~ ~). Thus (...)ab is transformed into 

(exp [-llRp(/3~ u) +/3)°))/~pb + 2~rib. Rp(m+r~)~)])n~ 

= (exp [-b(/3~) +/3)O))b + 2 ~rib. (m + r~]~ )) ])n~ 

(14) 

because Idet (Rp)] = 1. Finally, the summation over 
(m, a,/3) can be simplified to 

t>--J k 

1 nijk 

A~(b) = ~  w0~ E Y'. n(m+r~)~(m+r0~ ) 
(m+r(~ e f~o) s=l  

x (exp [b(/3~")+/3~O))b] 

x exp [2~rib. (m + r~]~))])ab, (15) 

with 

0 

~7(r) = ( l / L )  V(Rvr ) 
p = l  

r=0 

otherwise, (16) 

w h e r e  WOk is the multiplicity weight for the set  Dok , 
n (m + rUk) is the multiplicity of the m + rUk vector and 
L is the order of the group R. 

3. The asymptotic estimation of 
(exp (-b/$b) exp (2~rib. R))nb 

Let al, aE, a3 be the unit-cell vectors of the crystal, 
a*, a*, a* their reciprocal vectors and let us introduce 
a Cartesian reference system having axes el, eE, e3 
w i t h  e 3 - - R / R .  Then the orientational average of 
(exp (-b/3b) exp (2wib. R))nb is expressed with polar 
coordinates of b, (b, 0, ~p) [0 =/_(b, R)], as 

(exp (-b/3b) exp (27rib. R))ab 

= (1/4W) ~o 2~ de  ~o d0s in  0 

x e x p  [-b2/3(0,  ~p)] exp (2wibR cos 0) 

= Q(b, /3*, R) (17) 

with 

/3(0, ~) =/3"11 sin 2 0 cos 2 ~ +/3*2 sin E 0 sin E 

-~t-/33~3 COS E 0 +2/31"2 s in  E 0 sin ~ cos 

+ 2/32*3 sin 0 cos 0 sin 

+2/3"1 sin 0 cos 0 cos ~, (18) 

where/3* is the tensor relative to the Cartesian co- 
ordinates, as given by 

/3 = C/3C = DG/3GI.), (19) 

with Cis=(e~. as) , Dis = (ei. a*) and G 0 = (a~. as). Let- 
ting s c be cos 0 and using Heaviside's unit function 
H(~:), one can rewrite (17) as 

Q(b, /3*, g)=(1/4~rr) ~2~ d~ 

x ~-~o ds c F(s  c, tp) exp (27ribg~) (20) 

F(~,~o)=H(1-~)H(I+~)G[O(~),~o] (21) 

where ~ 

G[O(¢), q~]=exp [-bZ/3(O, ~p)]. (22) 

F(s  c, ~) is singular at ~: = 1 and ~: = -1  corresponding 
to 0 = 0 and 0 = 7r respectively and near each singular 
point it can be expressed as follows: 

near ~: = 1, 

4 
F ( s e , ~ ' ) = H ( 1 - ~ )  E g.(0,~o) l - g [  "/E 

rl=0 

+ o(ll - #IE), (23) 

near ~ :=-1 ,  

4 
F(~ ,~p)=H(I+~ : )  Y. (--1)ngn('n',~)ll+~ n/2 

n =O 

+ o( 1 + ~12), (24) 

with 
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where 

go(0, ~ ) =  G(0, ~), 

g,(0, cp)=2'/20G(O, ~p)/O0, 

g2(O, ~)=02G(O, ~)/002, (25) 

1 [  03G(O' ¢) ~-OG(O' ~) 0------~ 
g3(O, ¢) -6 (2 ) , / 2  4 , 

1[04G(0,  ~o) 02G(O, ~o)] 
g,(o,,)=6L ~-~ v 002 _ 

According to theorem 19 on Fourier integrals by 
Lighthill (1958), (20) can be expressed as: 

' ( I  4 
Q(b, fl*,R)=-~ H ( 1 - s  c) ~ (g,,(0, q~)). 

n=0 
x [1- ~[,,/2 cos (27rbRs c) d~: 

+ H(I+  ~) ~ (-1)"(g.(m q')L 
n=0 

× l1 + #l "/2 cos (2rrbR~) ds c) 

+ o(1/R3), (26) 

where ( )~ means the average over the range (0, 27r) 
of ~o. 

Since 

a"G(0, ~o)/ao" = a"G(~r, ~)/ao", 

g.(Tr, q~) = (-1)"g.(0, q~) 

and 

~-~oo H ( 1 -  ~) 1 -  ~V '/2 cos (2"rrbR~) d~ 

= J-~oo H(1 + ~:)11 + ~:1 "/2 cos (27rbR~)d~:, 
2 

Q(b,/3*, R ) =  E (g2,,(0, ~)) ,  ~-~oo H(1 - s r) 
m=0 
xl l -~: l"  cos (27rbR~) d~ + o(1/ R3). 

Finally one can obtain an asymptotic formula with 
respect to R: 

Q( b, /3", R)=exp  (-/3*33b2)( J, + J2 + Jr3) 

+o(1/R3), (27) 

with 

J3 ~ 

J~ _ sin (2~rbR), (28) 
2 "tr b R 

cos (27rbR) (A, b2_2A2b4) ' (29) 
J 2 -  (21rbR)2 

sin (27rbR) [A~b2+ i 2 (~a3 + 2/3 *2 + a 2 - 10A2) b 4 
(27rbR) 3 

-2(2AIA2 + A3A4+4/3*12/.~ 23/~/'~*/'~:~131~b6+ 2AEb8], 
(30) 

and 

A, =/3*, +/3*2- 2/33*3, A2 =/3,2 +/3,2, 
(31) 

A3:/3",-/3"22, A4 = /3 "32 - /3 "32 

by use of the following formulas derived from Table 
I in Lighthill's (1958) book: 

f f H ( 1  - ~) cos (27rbR~:) d~: = 
sin (2,n-bR) 

2 ~rbR ' 

f~oo cos (27rbR) H ( 1 - ~ )  1 - ~  cos (2rrbR~) d ~ = -  )2 
( 2 rrbR ' 

(32) 

2 sin (27rbR) 
(2~-bR) 3 

From (29) and (30), it is proved that the conditions 
for J2=0 are /31*l+f12*2-2f13*3--0 and /31~g3-'---/32:~:3=0 
and the conditions for J2 = 0 and ./3 = 0 are/3* = 13"2 = 
/3*3 and /3*2=/3*23=/3*3,=0, that is, the vibration 
tensor be isotropic. Since for an isotropic vibration 
tensor,/3(0, ~ ) in  (18) turns out to be/3*3, Q(b,/3*, R) 
is exactly equal to exp (-/3*33b2)j,(27rbR). Hence the 
asymptotic expression in (27) is a quite reasonable 
formula and the correction for the anisotropy of the 
tensor is to be made by -/2 and J3 through the factor 
A,,  A2 etc. Equation (20) shows that Q(b,/3*, R) can 
be characterized by the two factors/3*/R E and bR = X 
such that 

Q(b, fl*,R)=(1/4~r) dq~ d~ 
-,  

x exp R2 

='(I(/3* / R2, bR ). (33) 

Regarding Q(/3*/R2, bR), the correction for the 
anisotropy is to be made by A~/R 2, A2/R 4 etc. If 
A,/R2>> A2/R 4, A,/R2~ A3/R 2, A,/R2>> AdR 4, 
(/3*, +/3"2- 2/3"3)/R 2 turns out to be the main factor 
standing for the anisotropy of the tensor. Since J~ 
and J3 vanish at X = n/2 (n: integer), the errors of 
J~ are evident at these points. 

4. Evaluation of Q(b, fl*, R) by the use of the 
asymptotic formula 

In order to examine the validity of the asymptotic 
formula (27), the numerical double integral in (20) 
was computed by the method for numerical integra- 
tion (Clenshaw & Curtus, 1960; Hasegawa, Torii & 
Ninomiya, 1983) using the FACOM M-180 (II) AD 
computer of the Computer Center of Osaka City 
University. 
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(a) Si-O pair 
R = 1.6036 A 

(b) Si-O pair 
R = 3.5278 A 

(c) Assumed j3air 
R = 1.20 A 

Table 1. Vibration tensors for examples (a), (b) and (c) 

f~ll f~22 f~3 ~*12 f~13 ~'23 
0"4079 0"3439 0"1406 -0"06821 -0"05555 0"06024 

0"3718 0"3460 0"1744 -0"06680 -0"1181 0"03046 

0"60 0"60 0.10 0"0 0"0 0"0 

Table 2. The crystal data and vibration tensors of 
a-quartz determined by Young & Post (1962) 

Space group  

Lattice constants  

Posit ional parameters  
Si (3a)  
0 (6c) 

Vibration tensors (A)  

f i l l  f 2 2  f 3 3  

Si 0.0049 0.0027 0-0049 
O 0.0143 0.0081 0.0090 

(a )  Si -O pai r  
R = 1.6036 A 
(f*, + f*~- f3.3)/R~ = o. 18 

(b)  Si -O pai r  o 
R = 3"5278 A 
(fl*t + f*2 - 2 f ' 3 ) / R 2  = 0.097 

(c) An assumed pair  
R = 1 . 2 0  A 

:g :g :g 2 
( f l l  "+" f 2 2  - -  2f33)/R = 0 " 6 9  

P3~2 

a = 4 . 9 1 2 8 A  
c = 5-4042 A 

u =0"4705 
x =0 .4152  
y =0"2678 
z = 0.1184 

f t 2  f 1 3  f 2 3  

0.0 0.0 -0.0001 
0.0085 -0.0032 -0.0042 

1.0 

0 .0  

Exact 

" ~  b R  

- 1 . 0 l  

The exact value of Q computed and the differences 
of the Q from the calculated values Ja, J2 and J3: (I) 
Q - e x p  (-/3*362)ja, (II) Q - e x p  (-fl*3b2)(J~+J2) 
and (III) Q - e x p  (-/3*362)(J~ + J2+ J3) are plotted 
versus bR for three examples (a), (b) and (c) in Fig. 
1, where (I), (II), (III) and the exact calculation of 
Q are plotted by broken, chain, dotted and solid lines 
respectively. Examples (a) and (b) correspond to two 
(Si-O) atomic distance pairs in an a-quartz crystal 
and their atomic distances and tensors/3* are shown 
in Table 1. These values were calculated from the 
crystal data (Young & Post, 1962) which are tabulated 
in Table 2. Example (c) is an assumed pair whose 
tensor is diagonal, as shown in Table 1. As seen in 
Fig. 1, the errors in J~ are greatest and least for (c) 
and for (b) respectively and the magnitudes of (/3* + 
/3"2-2/3"3)/R 2 are greatest and least for (c) and (b). 
The dotted curves for (III) for (a) and (b) are not 
drawn, because the errors in (27) are too small. 

F 
F 

-0"01 ~ t _  

0 " 0 1 t ~  Exact 

o0[ / 1/-,, % .  3.__ 4 _ 3 
• L /  

_oo,t 
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i . . . . .  I . . . . .  II 
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k . ,  
i_v ". i ,'~ . ; ' " ,  ; ' "  

o.o i / '  i 1 . / .  ". 2 ,," ".., 3 ,"',, 4 ..---... s • .~ ,' / " ' , ~ ' ~ - " ' - ' r  ,-r" : ' ,z '  7 -  %.: 0.0 
~ . ! b R  ".-" 
:._ " , . , :  

, . :  

-0.01 

. . . . .  I 
. . . .  II 
............ III 

1 2 3 4 5 
_ , ~ < . ~ / -  - ~ . . . ,  . , . . . :  - . . . , -  - .  . . . . .  

b R  

1.0 

Exact 

I \ 1 2 3 4 5 

I 
I 

V 
- I - o L  

[ 

0"01 

.',~ 

-0"01 

. . . . .  I 
:': . . . . .  II 
i !  ,, ......... III , , 
, . 

'. ; . /',, 
• ? ,-; ; ¢ ,, , 

: '1  : '2: , : ' 3 :  / :~4', " : , 5  
0.0- , ' --',~-~.=-, /',,: ~ : : , :  .,'/,,, 

" :  i ' ' ~ : '  ' " (  ; ' ; ' ' 2 , . z  : , ; ' ,, r '  ' : ", , bR .  . , , .. 

~ i : i  i i : ' , i  

r I . . 

f/i ' 
!,i. 

(a )  (b)  (c) 

Fig. 1. The  plots o f  (I) Q - exp ( - f * 3 b 2 ) j i ,  (II)  Q - exp ( - f~3b2) (J1  + J2), ( I I I )  Q - exp (-f l*3b2)(Jt + J= + -/3) and  the exact  calculat ion 
o f  Q vs bR for  examples  (a ) ,  (b)  and (c). 
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In order to see the influence of vibrational 
anisotropy on the intensity profile s I ( s )  (s =27rb) 
and the radial distribution function 4 7 r R D ( R  ) ( R D F )  
for small crystallites, those functions were calculated 
for two crystals of spherical shape with a diameter 
of 14/~. Both crystals have the same crystal parameter 
as shown in Table 2 but they have different vibration 
tensors. Vibration tensors for one crystal are 
anisotropic as shown in Table 2, while those for the 
other crystal are equivalent isotropic vibration 
tensors, whose diagonal elements are /3"i= 
0.09799/~2 and /3"=0.1991 ]k 2, reduced by Hamil- 
ton's (1959) method from the real anisotropic tensors 

- 5  

- 1 0  

t r  

t~ az 

anisotropic 

. . . . . .  isotropic 

~ W 8  ~ k/%/12 V - V 1 6  - ~  20 
s (A-') 

I 
0 ' ' ' ' 10 ' ' ' ' 1'5 R (A) 

Fig. 2. Intensity profile sI(s) and the radial distribution function 
(RDF) for crystallites with anisotropic and isotropic vibration 
tensors. 

shown in Table 2. For the sake of convenience, the 
atomic scattering factors of  Si and O were assumed 
constant as 14 and 8. In Fig. 2 curves of  sl(s)  versus 
s (A -t) and RDF versus R(~,) are drawn with solid 
and broken lines for the former and the latter respec- 
tively, where considerable difference between them 
can be observed. It can be concluded that the effect 
of  anisotropy of the vibration tensor cannot be neglec- 
ted in the case of  small crystallites. 

5. Discussion 

For a gas molecule with thermal vibrations James 
(1932) derived diffraction intensity formula JJms as 
follows: 

sin(27rbR) 
JJms=exp  (-/3*33b2) 27rbR 

2 b2 /31*l 
+ (27rbR)---~2 (fl*3 2 fl*2) 

r sin (2"n'bR) ] 
X_/L ~ 2 - ' ~ "  c o s  ( 2 ' n ' b R )  ._1 ( 3 4 )  

His formula is quite different from (27) except for 
the first term. In Fig. 3 (I) Q - e x p  (-/3*3bE)jl, (II) 
Q - e x p  (-fl*3b2)(J1 +./2), (III) Q - e x p  (-/3*3 b2) x 
C(Jl + J2 + -/3) and (IV) Q - JJms are plotted by broken, 
chain, dotted and double chain lines for example (a); 
the dotted line is indistinguishable from the abscissa 
in the figure, because the magnitude of (III) is too 
small. It is seen that James's formula gives a worse 
approximation as bR becomes larger and his second 
term does not correct his first term, although in the 
asymptotic formula (27), the second and third terms 
advance the first approximation, as described in § 4. 

In summary, (1) the effect of anisotropy of the 
vibration tensor cannot be neglected in the case of  
small crystallites. (2) Precisely speaking, the error of 
the first approximation should be estimated by the 
magnitude of  (/3* + /3"2-  2fl3"3)/R 2, but not of/33~3/R 2 
and accurate calculation can be obtained by formula 
(27). 
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Fig. 3. The plots of (I) Q-exp(-[3*ab2)Jl, (II) Q-  
exp (-[3%b2)(J~ + J2), (III) Q-exp  (-[3*3b2)(Jt + J2 + J3) and 
(IV) Q-JJms vs bR for example (a). 
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